J. Am. Chem. So0d.996

Experimental and Theoretical Evidence for Oxirane
Formation Reaction of Pentacoordinate
1,24%-Oxathietanes with Retention of Configuration

Takayuki Kawashima,* Fumihiko Ohno, Renji Okazaki,*
Hirotaka Ikedal, and Satoshi Inagaki*

Department of Chemistry, Graduate School of Science
The Unversity of Tokyo, 7-3-1 Hongo
Bunkyo-ku, Tokyo 113, Japan
Department of Chemistry, Faculty of Engineering
Gifu University, 1-1 Yanagido, Gifu 501-11, Japan

Receied August 26, 1996

From our interest in diheteracyclobutark®earing highly
coordinate main group elements at the neighboring positfon,
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THF, —78°C, 15 min; (c) aqueous Ni&I; (d) FCC (SiQ); (e) 2 equiv
of n-Bu,NF, THF, 0°C, 30 min; (f) 1.0 equiv of By, 2.0 equiv of

we have reported the synthesis and thermolysis of the penta-Et;N, CCL, 0°C; 25°C, 7 h; (g)mCPBA, NagHPQ,, CH,Cl,, 0 °C —

coordinate 1,25-oxathietane2.3* Almost quantitative oxirane
formation from2 has suggested a possibility that the oxathietane
is an intermediate of the CoreyxChaykovsky reaction of
oxosulfonium ylides with carbonyl compoungls.
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It has been proposed that the Corahaykovsky reaction
involves the formation of an anti-betaine followed by a back
side attack of an oxido anion on thecarbon® But, if the
oxathietane is a real intermediate of the Cer@haykovsky
reaction’ S—O bond heterolysis followed by-6C bond rotation
is necessary for such an oxirane formation. Electrostatic
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interaction between the oxido anion and the sulfonium cation,
which seems a driving force of the formation of the oxathietane
ring, would resist the €C bond rotation. In this case, an
alternative mechanism such as a concerted mechanism or a front
attack of the oxido anion without the-€C bond rotation can
be expected to be operative. In order to elucidate these
possibilities, we have decided to examine the stereochemistry
of the oxirane formation. In this paper we wish to report the
first example of the oxirane formation with retention of
configuration and the theoretical study of this process.

Two diastereomers of pentacoordinatel®;@xathietane8a
and 3b with the Martin ligand were synthesized by the same
method as previously reported (Schemé IJhe separation of
diastereomer8a and6b was nicely performed by flash column
chromatography (FCC, S The stereochemistry &a and
8b was determined by differential NOE experiments as fol-
lows: NOE between a methine proton of carbon-3 and ortho-
protons of the phenyl group of carbon-4 was observed for
(3S4R)- or (3R,49)-8aand not for (F49- or (3R,4R)-8b. Since
the stereochemistry around a pentacoordinate sulfur and the
‘relationship between the=8D group and the phenyl group at
carbon-3 for3 are considered to be the same as those reported
for 2 and, furthermore, the relative stereochemistry around
carbon-3 and carbon-4 is retained during the oxidatio, 8&
and3b are concluded to have the structures as shown in Scheme
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. Thermolysis of3a gave the corresponding oxirafa along
with 5, phenyl-migrated keton&0, benzaldehydelfl), cyclic
sulfinate 12, a diastereomeric mixture of cyclic thioacetal
Soxides 13, and cyclic thioacetal4 (Scheme 25. In sharp
contrast to the thermolysis &3 the yield of oxiraneda was
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2 Obtained by'H and**F NMR.* In CDCl. ©In THF—CeDs (6:1). Transition states for the concerted oxirane formation from simple

dThe ratio of two diastereomers was shown in the parentheses. | 2_gxathietane45—18 as model compounds were located by
¢ Observed by GC-MS. ab initio calculations (RHF/4-31G®¢ The activation energies
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for the process were calculated to be 28.2, 46.7, 45.3, and 53.8
kcal mol1for 15, 16, 17,13 and18, respectively. The structure

R2 O Ph PO of the transition state and energy diagram for the oxirane

—_— B * ©f:/° formation from 18 are shown in Scheme 4. The values of
R % activation energy correspond to how much the substituents can

S 12 stabilize the positively polarized central sulfur atom; oxo and

ion of relative stereochemistry hydroxyl groups destabilize the positive charge on the sulfur

atom more than hydrogen. A similar polarized transition state

quite low, but only a single isomer was obtained. Similarly, was reported for the apicakquatorial ligand coupling of

the thermolysis oBb afforded the other isomedb stereospe-  sulfuranes* This is the first finding for oxirane formation
cifically. pathway from 1,2-oxathietanes, which can be recognized as a

Differential NOE experiments showed ttf8sand9b are ¢)- carbon—oxyggn ligand-coupling reaction of sulfurarﬂés.
and E)-isomers, respectively, indicating that the oxirane forma- th In cqnclusf|on, V\f havs[zhderpor:§trat¢afd thi. first tgxamprl]g Lor
tion proceeds with retention of configuration (Scheme 3). That € oxirané formation with retention ot configuration, whic

is, the stereochemistry of the oxirane formation was completely fﬁ:of’;igz?iiﬂgd ?5\/2;25'3165 tcﬁnzf?gi?gﬁg\;iwnﬁgﬁlo?é CAé eds
reverse to that expected for the back side attack of the oxido y P

- . . via a concerted mechanism involving a polarized transition state.
anion. Pentacoordinate Z3oxathietanes3 are formally gap
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